Kinetics of 90° domain wall motions and high frequency mesoscopic dielectric response in strained ferroelectrics: A phase-field simulation
نویسندگان
چکیده
The dielectric and ferroelectric behaviors of a ferroelectric are substantially determined by its domain structure and domain wall dynamics at mesoscopic level. A relationship between the domain walls and high frequency mesoscopic dielectric response is highly appreciated for high frequency applications of ferroelectrics. In this work we investigate the low electric field driven motion of 90°-domain walls and the frequency-domain spectrum of dielectric permittivity in normally strained ferroelectric lattice using the phase-field simulations. It is revealed that, the high-frequency dielectric permittivity is spatially inhomogeneous and reaches the highest value on the 90°-domain walls. A tensile strain favors the parallel domains but suppresses the kinetics of the 90° domain wall motion driven by electric field, while the compressive strain results in the opposite behaviors. The physics underlying the wall motions and thus the dielectric response is associated with the long-range elastic energy. The major contribution to the dielectric response is from the polarization fluctuations on the 90°-domain walls, which are more mobile than those inside the domains. The relevance of the simulated results wth recent experiments is discussed.
منابع مشابه
Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition.
Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral-tetragonal phase transition of strained (001)-BiFeO3 (rhombohedr...
متن کاملMathematical Modeling of Strong Ground Velocity Pulses using Spectral Decomposition and Forward Directivity Effects
Introduction The nature of near-field earthquake records is very complicated and uncertain. Due to this complexity, the prediction of the real structural responses has become very difficult. Based on the analysis of the physical characteristics of near-field records, it is possible to use the simplified mathematical models. Near-field ground motions which are often associated with a progressiv...
متن کاملFerroelectric and ferroelastic domain wall motion in unconstrained Pb(Zr,Ti)O3 microtubes and thin films.
Ferroelectric polarization switching of high aspect ratio (>80:1) PbZr(0.52)Ti(0.48)O(3) (PZT) microtubes with a wall thickness of ~200 nm was investigated. A charge-based technique was used to assess the dielectric and ferroelectric properties of individual mechanically-unconstrained PZT microtubes with interdigitated electrodes. An enhancement in the degree of ferroelastic (non-180 degrees ) ...
متن کاملFDTD Analysis of Top-Hat Monopole Antennas Loaded with Radially Layered Dielectric
Top-hat monopole antennas loaded with radially layered dielectric are analyzed using the finite-difference time-domain (FDTD) method. Unlike the mode-matching method (MMM) (which was previously used for analyzing these antennas) the FDTD method enables us to study such structures accurately and easily. Using this method, results can be obtained in a wide frequency band by performing only one ti...
متن کاملEstimation of Moisture in Transformer Insulation Using Dielectric Frequency Response Analysis by Heuristic Algorithms
Transformers are one of the most valuable assets of power systems. Maintenance and condition assessment of transformers has become one of the concerns of researchers due to huge number of transformers has been approached to the end of their lifetimes. Transformer’s lifetime depends on the life of its insulation and the insulation’s life is strongly influenced by its moisture attraction as well....
متن کامل